
UN4CLASS I FIED
jECUm0'v C-AS&SIrICATION O

r
TWIS PAGE fNen Does Enterd)

REPORT DOCUMENTATION PAGE READ INSTRUCTi6NSR DBEFORE COMPLETING FORMI. REPORT NUMSIER 1.GV ACSIO O . RECIPIENT'S CATALOG NUMBERA

AIM 1165

4. TITLE (end Subtile) S. TYPE OF REPORT A PERIOD COVERED

The Standard Map Machine memorandum

6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(a) 11. CONTRACT OR GRANT NUMSER(J)

Brian LaMacchia and Jason Nieh
N00014-86-K-0180

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK
AREA 0 WORK UNIT NUMUERS

0) Artificial Intelligence Laboratory

545 Technology Square
~Cambridge, MA 02139

SI1. CONTROLLING OFFICE NAME AMC ADDRESS It. REPORT DATE

Advanced Research Projects Agency September 1989

1400 Wilson Blvd. IS. NUMBEROF PAGES

Arlington, VA 22209 48
7I. MONITORING AGENCY NAME & AODRESSI llifereto from Conerellinl Ofle.) IS. SECURITY CLASS. flo thlo report)

Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 Is. DECLASSIFICATION/DONGRADING

1S. DISTRIBUTION STATEMENT (ef Ohio Report)

Distribution is unlimited

I1. DISTRIBUTION STATEMENT (of ift abstract entered In lek 2. it difterent Drm Re ort)

DTIC
1,. SUPPLEMENTARY NOTES LE. I E. D

A RO2 14990
None SB

it. KEY WORDS (Coninue on reveree side II neceossar and Identify by bl Me ber)

chaos -, nonlinear mappings/

numerical computations computer architecture
special-purpose computing,

29. ABSTRACT (Continue On M See lide oI neeesew7 and identify by leek nmaer)

We have designedthe Standard Map Machine (SMM)/as an answer to
the intensive computational requirements involved in the study of chaotic
behavior in nonlinear systems. The high-speed and high-precision per-
formance of this computer is due to its simple architecture specialized
to the numerical computations required of nonlinear systems. -1 this re-
port, we, discuss the desin and implementation of this special-purpose
machine. //,- ,I

DD FM 1473 EDITIONf I NOV 11IS OBSOLETE UNCLASSIFIED
S/01 0*!02-014o-6601 1 SECURITY CLASSIFICATION 07 THIS PAGE (Ithon Date EnIlroe

Appro'oed kvi pub~5 xwooj

A.I. Memo No. 1165 September, 1989

The Standard Map Machine
by

Brian LaMacchia and Jason Nieh

Artificial Intelligence Laboratory
and

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

ABSTRACT

We have designed the Standard Map Machine (SMM) as an answer to
the intensive computational requirements involved in the study of chaotic
behavior in nonlinear systems. The high-speed and high-precision per-
formance of this computer is due to its simple architecture specialized
to the numerical computations required of nonlinear systems. In this re-
port, we discuss the design and implementation of this special-purpose
machine.

Keywords:
chaos, nonlinear mappings, numerical computations,
computer architecture, special-purpose computing

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's artificial intelli-
gence research is provided in part by the Advdnced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-86-K-0180.

Acknowledgements

We are grateful to Professor Gerald J. Sussman for providing us with the opportunity
to learn. He first suggested the idea of special-purpose computing for dynamics
and provided guidance concerning the applications of SMM and the methods of
computation. Many thanks for all of his advice and encouragement.

Special thanks to Henry Wu for his help with the initial design of SMM and with
the implementation of the machine. He provided valuable suggestions on many of
the issues which arise in high-speed digital design. Henry also created some of the
software tools which made debugging the SMM hardware much easier.

Much gratitude is due to Andrew Berlin for his suggestions and encouragement.
He suggested a number of useful considerations in the initial construction of the
machine and also helped debug the hardware.

Thanks also to Panayotis Skordos and Gerald Roylance for suggestions on numer-
ical methods, Mike Eisenberg and Professor Jack Wisdom for explanations about
nonlinear phenomena, William McAllister for suggestions about hardware debug-
ging, Bill Rozas for helping with the final stages of debugging the system, Professor
Harold Abelson for helpful comments in writing this report, and the other members

*of Project MAC for all their support and encouragement.

Aooeosion For Oe

NTIS GRA&I L
DTIC TAB
Unannounoed 0
Justifioatio.

By - ..
Distribution/

Availability Codes

Avail and/or

Dist Speoial

Contents

1 Introduction 1

2 Initial Considerations 2

3 Architectural Design 3

3.1 The Computation Unit. 3

3.2 The Microcontroller. 5

4 Implementation 7

4.1 Timing 7

4.2 Construction 7

4.3 Host Interface 8

5 Programming 5MM 10

5.1 The SMM Language 10

5.2 The Assembler 11

6 Performance 13

7 Conclusion 15

A Control Bits of the SMM Instruction Word 17

B Design Schematics and Timing Diagrams 18

C The Register Transfer Language 25

C.1 Instruction Opcodes................................ 26

C.2 Destinations...................................... 29

C.3 Sources... 30

C.4 If Clauses 31

C.5 Example Instructions. 32

D The SMM Software Suite 32

D.1 New Scheme Primitives............................... 33

D.2 Scheme Utilities................................... 34

D.3 Using Chasm..................................... 36

DA4 Assembler Caveats and Programming Hints................. 36

D.5 Assembler Error Messages............................ 39

List of Figures

1 Architectural Description. 4

2 Model of Instruction Flow 6

3 Functionality of an Instruction Word 7

4 The Standard Map Machine. 9

5 Functional Description with System Clock 19

6 Computation Unit. 20

7 Microcontroller 21

8 Host Interface 22

9 Timing Diagram. 23

1 Introduction

High-speed computation is playing an ever increasing role in the pursuit of scientific
endeavors. However, large areas of scientific research remain as yet inaccessable due
to insufficient computing resources. There is demand in a wide variety of applica-
tions for faster and faster computation tools.

A technique that has proven effective in tackling such computationally intensive
problems is special-purpose computing. Special-purpose computing has been used
in a number of different areas with much success. For instance, the Digital Orrery,
designed to simulate the long-term behavior of the solar system, performed the
longest integration of the orbits of the planets to produce evidence that the motion
of Pluto is chaotic. We see the power of special-purpose computing in competitive
chess, where the computer Deep Thought has defeated numerous high-ranking chess
masters, as well as chess programs running on general-purpose supercomputers.

The performance advantage of special-purpose machines is derived from a number of
factors. The application-specific design allows oire highly optimized architectures
of less complexity than their general-purpose counterparts. These simpler machines
are more cost-effective and can be dedicated solely to a particular problem, rather
than having to be shared, as is the case for large expensive supercomputers.

In this light, we have designed the Standard Map Machine (SMM) as an answer to
the intensive computational requirements involved in the study of chaotic behavior
in a class of nonlinear systems. SMM is tailored to perform nonlinear mappings
with high speed and high precision. The prototype implementation fits on a single
board and performs at an average rate of about 2.5 MFlops for the class of problems
that it was designed to solve. The novel computer design and implementation are
presented in the following sections.

Q1

3 Architectural Design

Figure 1 shows the architectural configuration of SMM. The machine has two sec-
tions: the computation unit and the microcontroller. Data path specialization and
instruction pipelining result in maximum utilization of the multiplier/ALU floating
point module.

3.1 The Computation Unit

The computation unit has four parts: the data memory, the register file, the multi-
plier/ALU module, and the feed-through latch. These parts are interconnected by
32-bit data paths. Data is moved between SMM and the host computer via an inter-
face to the data-memory system. Values that are to be used for a computation are
written to the fast dual-port register file and then fed into the multiplier/ALU unit.
The multiplier/ALU component is made up of a Weitek 1264 64-bit IEEE floating
point multiplier arid a Weitek 1265 64-bit IEEE floating point ALU. Normally, the
floating point chips arc operated in pipeline mode to maximize throughput. In this
mode, a new 64-bit multiplier operation can be initiated every four clock cycles with
a latency of ten clock cycles, while a new 64-bit ALU operation can be started every
two clock cycles with a latency of twelve clock cycles. (The minimum clock cycle
time for the Weitek chips is 60 nanoseconds.) The results of floating point oper-
ations are then sent to the data memory, register file, feed-through latch, or any
combination of the three. Intermediate results are ususally stored in the register
file. The data memory is used if there is no free space left in the register file or if
the value is not needed immediately. If the result is to be used as an input to the
multiplier/ALU module immediately after it has been calculated, it is fed directly
to the feed-through latch. The result must be written to data memory if it is to be
sent to the host computer.

The feed-through latch is an additional data path feature developed to optimize
the computation of polynomial approximations of special functions such as sine
and cosine. From the series expansion in Equation 3, we see that such functions
are computed serially for a small number of execution units.1 Because of this. the
computation of each successive iteration in mappings such as the standard map is
a serial computation, since the calculation of both x and y values depends on the
value of the sine function. The feed-through latch takes advantage of the serial

1If there are a large number of execution units, the polynomial can be rewritten so that the
terms can be calculated in parallel, independent of each other.

3

C6

4 d~d

nature of the calculation by allowing the results of computations from the floating
point unit to be fed directly back into the inputs to the floating point unit without
passing through the register file. Data values can remain in the data paths for
repeated computations without ever having to be written back to the register file,
thus reducing the latency of the computation.

Besides numerical data calculations, the Weitek unit is also used to perform condi-
tional tests, such as comparing the values of two numbers, and converting floating
point numbers to integers for data memory write address calculations. Write ad-
dresses are calculated such that the low eight bits of the resulting integer are sent to
the memory address register and latched in as the high eight bits of a memory write
address. This allows fast calculation of page addresses to which to write the results
of data computations. Furthermore, the amount of data memory that can be used
to write results is not limited by the microcode memory size, as would be the case if
write addresses were not calculated but rather were fixed by the microcode instruc-
tion. Data memory read addresses are fixed by the microcode instruction because
much of the data memory, where the final results of computations are stored until
being sent to the host, will not need to be read for the kinds of applications that
SMM will run, and direct addressing provides better latency so that data can be
read immediately upon execution of the read instruction.

3.2 The Microcontroller

The microcontroller consists of a microcode loader, the microcode memory, a variable-
length pipeline register, and a condition code selector. Programs for the computer
are assembled into microinstructions on the host machine and downloaded from the
host through the microcode loader, which then stores the microinstructions into the
micromemory. When the microcontroller is operating, the program stored in the mi-
crocode memory is executed. The instruction located at the current microaddress is
read from the memory and sent to the variable-length pipeline register. The instruc-
tion is clocked in through the register, resulting in the proper control signals being
sent to the computation unit as well as the microaddress of the next instruction be-
ing sent to microcode memory. The length of the pipeline is different for each control
signal so that each of the signals coming out of the microcontroller arrives at the ap-
propriate module at the right time. In addition, the length of the entire instruction
pipeline is varied by the microinstruction, depending upon whether the multiplier
or ALU is being activated. This variation is necessary because the pipelined latency
of the multiplier differs from that. of the ALU. The condition code selector sends
branching instructions to the microcode memory c4epending on the current state

0

of the machine and the result of conditionals computed by the computation unit.
Thus, data dependent instructions are permitted.

read- I wxecte-1 prn n~

dataa da

data execute 2 operand data

read-3 ~execute- operand wi

data excue- opean

Figure 2: Model of Instruction Flow

A 96-bit instruction word length was chosen. The function of each instruction bit is
described in Appendix A. The long word instruction format allows parallel execution
of the subsystems of the computation unit. Instruction flow is as shown in Figure 2.
One instruction word, and thus one single-precision floating point operation, can be
executed every clock cycle. This performance is possible because of the variable-
length hardware pipeline register. As mentioned above, the microcode dynamically
alters the length of the pipeline so that the control signals arrive to the appropriate
subsystem modules at exactly the right time. Furthermore, the hardware pipelining
easily facilitates multiple branching by guaranteeing that the write address for the
result of the data operation will not disappear until the result has been written,
despite the interleaving of instructions.

Each instruction word can be described functionally as shown in Figure 3. The
memory field is used to write a data value stored in data memory to the register
file. The computation field is used to perform an operation using the multiplier/A LU
module. The branching field is used for conditional branching.

6

4 Implementation

Our implementalion of SMM uses standard off-the shvlf parts, primarily Advanced
Schottky TTL technology. Single-port SRAM is iied for both the data and mi-
crocode memory systems. There are 2 K words of microcode instruction memory, 8
K words of data memory, and 64 words of register file locations, where an instruction
word is 96 bits in length and a data word is 32 bits in length. Four-level pipeline
registers that combinatorially select which pipeline level the resulting output comes
from are used to implement the microcontroller pipeline. The system clock. w,ite

pulses, and latch pulses are all derived using a single delay line. Schematics are
given in Appendix B.

4.1 Timing

Timing analysis of the machine is shown in Appendix B. Positive edge timing is
used. Maximum and minimun propagation delays are taken into account, as weNll
as the tolerances on each tap of the delay line. The minimum clock cycle time is

62.5 nanoseconds as limited by the critical data path latency front the output of the
Weitek unit through Ihe feed-through latch back to the input of tile WCitek niit.

As a result, a 70 nanosecond delay line was chosen for the initial implementation.
Data reads are done during the first section of the clock cycle anid data writes are
done on the later section of the cycle.

4.2 Construction

The computer was built on a :366 mn x 220 mm wire-wrap board with groulvd
and voltage planies to reduce noise lprobleiri' . A ictur, of tl,(completed hard Iware

write datx to regirter rompue opr-,tio -rlect nditioraI
fli from fAM nd - te daa f-r)--an hirg

memory computation branching:

Figure 3: Finctionality of in Inst r'ictii ' Word

0

is shown in Figure 4. lpF bypass capacitors were soldered directly between Vcc
and GND on dual-in-line chip packages and 47pF electrolytic bypass capacitors
were distributed all over the board. In addition, 4.7pF tantalum capacitors were
connected between Vcc and GND near the register files and Weitek chips because
of their extra sensitivity to noise. Clock signals were fed through multiple buffers
to avoid fanout and ground bounce problems. Twisted pairs were used for some of
the longer wires to reduce noise. Several of the wires required termination because
of heavy undershoot resulting from transmission line bounce [6]. Some of the wires
connected to CMOS inputs were also attached to TTL inputs to reduce undershoot
by taking advantage of TTL input clamping diodes. The current implementation
uses a 100 nanosecond delay line to produce the system clock, resulting in a 100
nanosecond clock cycle time. Some minor adjustments of the wiring that have not
yet been done at this time would reduce the transmission line noise that is present
and allow a faster cycle time.

4.3 Host Interface

The Standard Map Machine was implemented to communicate with an HP 9000
Series 300 computer system [5]. The HP 98630 Breadboard Interface was used to
construct memory map hardware to communicate between the backend processor
and the host machine. The asynchronous nature of the protocol requires that the
processor be stopped or in a "waiting state" in order for data to be transmitted to
and from the processor and the host.

The SMM "waiting state" is a special state the machine can enter while the sys-
tem clock is running. While in this state, SMM promises not to access the data
memory so that the host machine can access the memory safely without worry of
bus contention. It is possible to instruct SMM to enter and exit waiting states from
software, thus allowing data to be sent to and from the host during the execution
of a program.

Another way that the host can read and write data to SMM is to send an interrupt
signal to SMM, stopping the system clock, in this state, the machine is no longer
running and data can be transmitted between SMM and the host. In addition,
programs can be loaded into the microcode memory since the microcontroller has
stopped running. Note that programs cannot be loaded if SMM is running (i.e. the
system clock is on). To start SMM, a "start" signal is sent to SMM, which sends
the starting instruction from the microcode loader to the instruction register and
enables the SMM clock.

8

-- 4

* I

4
4

4

-
~0

I a
V

4
I

A
41

4 2

'1 4;;

Software was written to allow the user to interface with SMM in Scheme. Commands
that are available to the user are listed in the Appendix D. These comnauds give
the user great flexibility in the operation of the machine as well as easy access -o
the data memory system where the results of computations are stored.

5 Programming SMM

This section describes the programming language we created for SMM and the
assembler which converts that language into SMM microinstructions.

5.1 The SMM Language

We designed a register transfer language (RTL) for writing SMM programs. The
specific syntax of this language is detailed in Appendix C. Every RTL instruction has
three mandatory parts: an instruction opcode, a data source, and a data destination.
Optionally, an instruction specifies a conditional or unconditional branch in a fcurth
clause.

Although RTL is similar to actual SMM microinstructions, it is sufficiently ab-
stracted from the SMM hardware that programs may be written quickly. For ex-
ample, instruction macros allow programmers to specify double-precision operations
in one RTL instruction, even though it takes at least two cycles for SMM to move
double-precision numbers around. The expansion of double-precision macros is one
of the many tasks handled by the assembler.

The choice of the RTL model is well suited to SMM. All fields of an SMM instruction
are issued simultaneously; hardware pipelining ensures that control signals arrive at
each pipe stage during the appropriate cycle. This approach avoids the overhead
of flushing the pipeline before branches and the complexity of implementing soft-
ware pipelines in the assembler. Furthermore, the instruction pipeline allows the
programmer to completely specify an instruction at the beginning of the operation,
rather than having to manually follow data through SMM2 . The instruction pipeline
allows RTL programs to be written for SMM quickly and efficiently.

2Note that programmers still have to be aware of how long an operation takes so as to not
reference a data value before it has been computed.

10

5.2 The Assembler

Chasm, the CHaos ASseMbler, is our assembler for translating the SMM register
transfer language into microcode. Chasm is a multi-pass assembler; each phase
performs a piece of the assembly operation on the entire instruction stream until
the desired instruction bits are obtained. Below we detail the five chasm assembly
phases.

5.2.1 Phase 1: Macro expansion

Phase 1 of chasm is responsible for reading the source code list and expanding
all instruction macros. Macros come in two flavors: math macros and instruction
macros. Math operation macros allow the programmer to use simplified expressions
like (F->I <FOD>) (float-to-int convert <FOO>) instead of the fully specified oper-
ation (F21 <FOO> (NONE)). Instruction macros expand one instruction into many,
such as the (WAIT) loop macro and the DA (double-precision assign) opcode. The
output of chasm Phase 1 is a stream of valid, one-cycle instructions.

When Phase 1 encounters a double-precision instruction macro, it replaces the macro
with two single-precision instructions. The first instruction uses the same source and
destination as the original instruction, but modifies the math operation (if any) to
tell the multiplier/ALU that this is the beginning of a double-precision instruction.
The second instruction uses sources and destinations at addresses one greater than
the original instruction. This allows easy access to 64-bit quantities by using double-
precision instructions with the addresses of the low 32-bit words. For example, the
instruction:

(DA (R 40) (, (R 10) (R 20)))
;; Assign the sum of quantities in (R20,R21) and (R10,R11) to (R40,R41)

expands into the two instructions:

(A (R 40) (D1+ (R 10) (R 20)))
(A (R 41) (D2+ (R 11) (R 21)))

Here D1+ and D2+ perform the double-precision addition function.

5.2.2 Phase 2: Instruction Placement

Phase 2 of the assembler is responsible for assigning to each macro-expanded in-
struction a location in the SMM microcode memory. Generally, instructions are
placed sequentially starting at microcode address 0. Difficulties arise, however,
when placing conditional instructions.

Conditional branches in SMM are implemented by substituting one of seven one-bit
condition codes for the least significant bit (lsb) of the microcode address. Thus,
when we place a conditional instruction, we must make certain that:

1. The next instruction (i.e. "condition false, proceed to next sequential instruc-
tion") in the instruction stream must be located at an even address (lsb =

0).

2. The instruction immediately after the next sequential instruction in the stream
(lsb = 1) must be a copy of the instruction the machine is supposed to jump
to.

Phase 2 also performs two other important tasks. First, it makes sure that instruc-
tions are properly "linked" so that execution proceeds properly from one instruction
to the next, regardless of where those instructions are located in memoiy. Second.,
this phase places a (JUMP 0) instruction at the end of the code block. Since a copy
of the last instruction downloaded remains in the instruction latches, this forces
execution to begin at the start of the program.

5.2.3 Phase 3: Label Collection

The RTL allows any instruction to have a label for referencing by other instructions.
Labels are useful for designating the destinations of IF clauses and JUMP instructions.
Chasm Phase 3 associates an instruction address with each instruction label present
in the source code. These associations are used later when calculating the instruction
addresses of (GOTO : label) clauses.

5.2.4 Phase 4: Instruction Duplication

In Phase 2, chasm copied instructions that are destinations of conditional jumps
by marking the high-order instruction with a COPY token along with the label of

12

the instruction to be copied. Now that Phase 3 has collected label information and
calculated instruction linkage information, these tokens may be replaced by actual
instructions. Chasm Phase 4 copies instructions as necessary, making sure that
copied instructions link execution to the samne instruction as the original. By the
end of Phase 4, we are ready to build the bit strings to bc downloaded to SMM.

5.2.5 Phase 5: Bit String Construction

Phase 5 of chasm converts symbolic RTL into the 96-bit strings to be downloaded
into SMM. For each instruction, Phase 5 initializes a NOP bit string3 and then pro-
ceeds to modify that string based on the contents of the instruction. The output of
Phase 5, the *chasm-bits* vector, is a vector of bit strings which may be down-
loaded (by the download-code procedure) directly into SMM for execution.

6 Performance

The inherent maximum performance of any machine using one Weitek 1264/65 chip
set is approximately 4 MFlops for multiplier operations, clocking the machine at the
minimum clock cycle time of 60 nanoseconds. SMM approximately achieves this ab-
solute maximum when clocked at its maximum rate of 16 MHz. Actual performance
of this computer for the class of problems it was designed to solve is limited by the
throughput of the multiplier due to the serial nature of the computation. The cur-
rent hardware is running at a slower clock rate of 10 MHz, thus yielding about 2.5
MFlops for the single board machine. Since the ratio of time spent in host-processor
intervention versus that in numerical calculation is small, these performance levels
are sustainable for long periods of time.

This high performance is achieved by specializing the data paths for numerical coin-
putations and the serial nature of the problems that the computer was designed to
solve. Furthermore, variable-length hardware pipelining maximizes the throughput
of the machine by encouraging interleaved instructions. The major advantage in
the SMM design is that it allows the user to express large portions of real problems
as efficient sequences of microcode instructions. These instructions perform large
amounts of computation without ever requiring the host to manage control and data
flow on the board.

3 That is, a bit string which has the effect of a No OPeration instruction.

*13

Thepipelined operation of SMM allows simultaneous calculation of up to three map-
pings in problems like the standard map. This form of parallelism is well suited to
the study of the behaviorlof two-dimensional mappings since we can simultaneously
integrate three nearby trajectories and monitor their divergence.

14

7 Conclusion

Studying chaotic behavior in nonlinear systems through simulation requires numer-
ous calculations. The Standard Map Machine is a special computer designed and
implemented to perform these intensive calculations, such as the computation of
the standard map for millions of iterations. The prototype implementation fits on
a small wire-wrap board and provides 2.5 MFlops of double-precision computing
power for the class of problems that it was designed to solve. Its high-speed and
high-precision performance are due to the specialization of its architecture to the
numerical computations required of nonlinear systems.

This backend computer has numerous advantages over conventional floating point
accelerators and math coprocessors. Almost all of the computations can be per-
formed on SMM itself using its own fast microcontroller, rather than relying on the
slower instruction control of the host machine. This reduces the communication
costs between the host and the backend processor, a factor that heavily reduces the
performance of other machines. Furthermore, unlike costly supercomputing power,
SMM serves as a cost-effective instrument that can be completely dedicated for long
periods of time to numerical simulations of nonlinear systems.

As technology improves, we claim that machines of a similar nature can be designed
and implemented as effective instruments for scientific computing. Current chip
technology can already provide at least twice the performance of the floating point
multiplier/ALU chip set used in SMM. The simple architecture of special-purpose
computers allows numerical operations to be implemented more efficiently than is
feasible on a general-purpose machine. Specialized numerical architectures provide
the edge in high-speed and high-precision performance necessary for intensive com-
putations.

* 15

A Control Bits of the SMM Instruction Word

control bits functional description of bits possible values for control field

0- 9 microaddress bits 1-10 0 - 1023
10 wait 0 for not waiting, 1 for waiting
11 regfile B-port write-enable 0 for not enable, 1 for enable
12 regfile A-port latch-enable 0 for not enable, 1 for enable
13 regfile B-port latch-enable 0 for not enable, 1 for enable
14 - 19 regfile A-port read-address 0 - 63
20 regfile A-port/latch output 0 for regfile, 1 for latch
21 - 26 regfile B-port write-address 0 - 63
27 - 32 regfile B-port read-address 0 - 63
33 regfile B-port output 0 for enable, 1 for not enable
34 - 39 1264 multipler function 0 - 63, see Weitek spec.
40 - 45 1265 ALU function 0 - 63, see Weitek spec.
46 1264 load enable 0 for enable, 1 for not enable
47 1265 load enable 0 for enable, 1 for not enable
48 - 52 1264 load control 0 - 31, see Weitek spec.
53 - 57 1265 load control 0 - 31, see Weitek spec.
58 - 60 1265 unload control 0 - 7, see Weitek spec.
61 multiplier/ALU select 0 for ALU, 1 for multipler
62 regfile A-port write-enable 0 for not enable, I for enable
63 feed-through latch pulse 0 for do not latch, 1 for latch
64 SRAM write-enable 0 for not enable, 1 for enable
65 SMAR address latch pulse 0 for not enable, 1 for enable
66 -71 regfile A-port write-address 0 - 63
72 Weitek-to-SRAM buffer 0 for enable, 1 for not enable
73 - 75 conditon code select A, B, C select ccO - cc7
76 - 78 1264 unload control 0 - 7, see Weitek spec.

79 - 90 SRAM address 0 - 4095
91 default condition code 0 or I, set by assembler
92 condition code latch pulse 0 for not enable. 1 for enable
93 - 95 unused I__

Table 1: Description of SMM Instruction Bits

B Design Schematics and Timing Diagrams

The design schematics and timing diagrams for SMM and the host interface arc
shown in the following figures. Figure 5 gives a functional description of the overall
system with a detailed view of the system clock design showing the clock generator
as well as the derived write pulses and latch pulses. Note that the clock buffers
that were included in the actual construction to reduce fanout are not shown in
the diagram. Figure 6 gives a detailed diagram of the wire connections in the
computation unit. Figure 7 is a detailed drawing of the microcontroller. There are
three bits of the 96-bit instruction word that are currently unused. Figure 8 shows
the hardware for the host interface as well as the timing of interface signals. The
signals from the host are transmitted from the breadboard interface card that is
plugged into the backplane of the host, through ribbon cables, to the control and
data buffers. The breadboard interface is not shown here. Figure 9 shows the timing
analysis of the system.

18

ILL

W IL

- - -7P -1

Fiur 5: Fucioa Decitonwtyse lc

w 19

- s----------------

Et..4 MIN I.

SITT

E-,

* a S7L.

Fiur 6: Computaion Uni

20l"~ .-

I]t

:~ Uti

.521

_______________Z

Figure 8: Host Interface

22

- -I. !

-------- ... ---.
.. -- ' 4_ _ X ;... .. . --

- . -1 ";__.. .,

- 4".'....... ..

-[>j

S t4 .44 .,o

..:-.:: -. -

- * \ ~.'

Figure 9: Timing Diagram

23

24

C The Register Transfer Language

This section describes the instruction set of the SMM register transfer language. We
first present a symbolic description of the language, and then describe the individual
components of an instruction.

Grammar for the SMM register transfer language

<program> - (<instruction>*)
<instruction> - (<label> <delabeled-instr>) I (<delabeled-instr>)
<delabeled-instr> - <opcode-operands> <opcode-operands> <if-clause>
<opcode-operands> - A <dest> <source> I L <dest> <source> I

DA <dest> <source> I DL <dest> <source>
NOP I SIM <opcode-operands> <opcode-operands>
SET-WAIT-BIT I CLEAR-WAIT-BIT I
ALU-LOAD-MODE <load-mode-value>
MUL-LOAD-MODE <load-mode-value> I
JUMP <next-address> I WAIT

<dest> - <referenced>
<source> - <reference-i> I <math-clause>
<reference-I> -* <reference> I(LATCH) I (NONE)
<reference-2> - <reference> j(NONE)
<reference> - <reg-ref> I <sram-ref>
<reg-ref> - (R <regnum>) I (REG <regnum>) I (REGISTER <regnum>)
<regnum> E {x0 < x < 63,x E N}
<sram-ref> -* (S <sramaddr>) I (SRAM <sramaddr>)
<sramaddr> E {x0 < x < 4091,x E N}
<math-clause> - (<math-op> <reference-l> <reference-2>)
<math-op> -- + I * I-* I-I CMP ICMPO II1 F21 112F I F2IS
<next-address> - <label> I <absolute-addr>
<absolute-addr> - {0 < x < 2047,x E N}
<label> < :<label-char > <label-num-char>"
<label-char> E [a-zA-Z]
<label-num-char> E [a-zA-ZO-9]
<load-mode-value> E {x0 < x < 63,x E N}
<if-clause> -- (LCC) I (LCC GOTO <next-address>)

(GOTO <next-address>) I
(LCC IF <condition-code> <next-address>)
(IF <condition-code> <next-address>)

<condition-code> - < I > I ccO I ccl I cc2 I cc3 Icc4 I cc5 I cc6 I cc7

*25

Most instructions are of the form:

(<opcode> <dest> <source> <if-clause>)

although not all instructions neceassarily contain all four elements.

C.1 Instruction Opcodes

The first element of every instruction is the <opcode>, an identifier for the type of
operation requested. Each opcode is described briefly below:

C.1.1 NOP

The NOP instruction does nothing ("No-OPeration"). It occupies one SMM cycle.
NOP instructions can have labels and <if-clauses> like other instructions.

C.1.2 ASSIGN

The ASSIGN instruction, denoted by an "A" or "L" opcode (L for "load") is the
most common instruction in SMM RTL. It is used to move data from one place to
another, possibly performing some function on it along the way. The <dest> of an
ASSIGN is given the value of the <source>. If the <source> is a <math-clause>,
the value of the math operation is calculated first, and that value is then assigned
to the <dest>. Example:

(A (S 42) (+ (R 5) (R 10)))

Assign the sum of register 5 and register 10 to SRAM 42.

C.1.3 DOUBLE ASSIGN

The DOUBLE ASSIGN instructions "DA" and "DL" are macro instructions which
permit easy manipulation of 64-bit double-precision numbers. A DOUBLE ASSIGN
instruction is expanded at assembly time into two sequential ASSIGN instructions,
with the source and destination locations "incremented" to reference the high-order

26

word for the second ASSIGN. All arguments to a DOUBLE ASSIGN should be low-
order words of double-precision numbers (assumed to be even registers or SRAM
locations). Example:

(DA (S 8) ((R 4) (S 42)))

expands into the two instructions

(A (S 8) (DI+ (R 4) (S 42)))
(A (S 9) (D2+ (R 5) (S 43)))

The pseudo-operations "DI+" and "D2+" represent the two phases of a 64-bit add
operation (it takes two cycles to completely load both operands).

Note: If a "DA" instruction has a label, the label will be associated with the first
ASSIGN instruction. If a "DA" instruction has an (LCC) as part of it's <if-clause>,
that latch will occur on the first ASSIGN instruction. The remainder of the <if-
clause> will take place on the second instruction.

C.1.4 SIMULTANEOUS

The SIMULTANEOUS ("SIM") instruction allows the user to specify two orthogonal
operations which should occur during the same cycle on SMM. For example, the user
may wish to load a register with a value from SRAM while starting a computation
in the ALU. Since these two operations do not share any portion of SMM hardware,
they may be made SIMULTANEOUS. Example:

(SIM (A (R 4) (S 8)) (A (S 12) ((R 22) (R 26))))

Note: The SIMULTANEOUS instruction is single-precision only. No double-precision
version of "SIM" currently exists.

C.1.5 SET-WAIT-BIT

The SET-WAIT-BIT instruction forces the default "wait bit" of successive generated
instructions to be set (1). Otherwise this instruction is identical to the NOP instruc-
tion.

*27

C.1.6 CLEAR-WAIT-BIT

The CLEAR-WAIT-BIT instruction forces the default "wait bit" of successive gener-
ated instructions to be cleared (0). Otherwise this instruction is identical to the NOP
instruction.

C.1.7 ALU-LOAD-MODE

The ALU-LOAD-MODE instruction is used to effect "load mode" operations inside the
ALU. The "load mode" functions deal with such operations as rounding mode and
denormalized numbers. These functions are detailed in the Weitek specifications.
The <load-mode-value> given in the ALU-LOAD-MODE instruction is sent as the load
control field to the ALU.

C.1.8 MUL-LOAD-MODE

The MIUL-LOAD-MODE instruction is identical to the ALU-LOAD-MODE instructioll ex-
cept that it deals with the multiplier instead of the ALU.

C.1.9 JUMP

The JUMP instruction causes execution to jump to the instruction at <next-address>.
This instruction is functionally equivalent to a (NOP (GOTO <next-adress>)) in-
struction.

C.1.10 WAIT

The WAIT instruction is a macro which expands into a five-instruction loop. lponi
entering the loop, the WAIT signal is set (raised). Execution remains in the loop
until SMM receives a DONE signal from the host, at which time the WAIT signal
is cleared. WAIT allows easy interlocking between the host and SMM. A (WAIT)
expands into the following five instructions (n is a counter incremented with each
WAIT instruction):

(set-wait-bit)
(:*wait-n-start* nop (none) (none) (if cc4 :*wait-n-loop*))
(nop (goto :*wait-n-done*))

28

(:*wait-n-loop* nop (goto :*wait-n-start))
(:*wait-n-done clear-wait-bit)

C.2 Destinations

In most instructions, the second list element is the <dest>, or destination. The
<dest> tells chasm what machine location is affected by the action of the instruc-
tion, such as where a computed value should be stored. There are four types of
destinations.

C.2.1 Register Destinations

By far the most commonly used destination is the register file. The register file
contains 64 memory locations, or registers. Generally, values are loaded from the
SRAM into the register file at the beginning of a program, computation is carried
out using the register file locations, and final results are written back to the SRAM.

A register file destination consists of a keyword (either R, REG, or REGISTER) and an
address. Valid addresses range between 0 and 63. Thus, the destination

(REG 42)

represents address 42 in the register file.

C.2.2 SRAM Destinations

Sending data to the Static RAM is similar to using the register files. All SRAM
destinations have a keyword (S or SRAM) and an address between 0 and 4091. To
send data to SRAM location 17, simply use the destination

(SRAM 17)

*29

C.2.3 The LATCH Destination

In order to facilitate quick reuse of computed values, SMM has a feedback path
from the output of the ALU/multiplier back to the input port. This feedback path
is known as the LATCH, and to use it, simply use the destination:

(LATCH)

By its nature, the LATCH does not have state. Data values which are sent to the
LATCH must be referenced from the LATCH exactly when they are available on
the bus (either 12 (or 10) cycles after initiating an ALU (or multiplier) operation).
Failure to source the'LATCH properly will cause whatever data which was sent to
the LATCH to be lost. The assembler will attempt to issue warnings whenever it
thinks data may be lost due to incorrect timing, but this function is not currently
fully implemented.

C.2.4 The NONE Destination

Sometimes it is necessary to compute a value but not save the computed result.
such as when performing comparisons. In these cases, data on the bus should not
be saved anywhere. To indicate that the result of an instruction is irrelevant, use
the (NONE) destination. The (NONE) destination guarantees that no device will read
the bus and load the results of the instruction.

C.3 Sources

Just as most instructions need to know where to send their results, they also need
to know from where to get their results. The <source> of an instruction contains
this information. Sources may be simple or complex. Simple sources are exactly like
destinations. They may be register file locations, SRAM locations, the LATCH, or
NONE. Complex sources represent the result of a mathematical operation on two
simple sources. All complex sources are of the form:

(<math-op> <a-port-source> <b-port-source>)

For example, the expression (* (R 17) (R 42)) stands for the product of the values
in register locations 17 and 42. Many valid math operations exist; more may be
added as necessary.

30

Note: If the LATCH is to be used in a complex source, it must be listed as the
A-port source. Due to the design of SMM, the contents of the LATCH may not be
loaded into the B-port.

C.4 If Clauses

The fourth and final portion of each instruction is the <if-clause>. The <if-clause>
contains all information necessary for computing where execution should proceed
upon completion of the instruction. If clauses come in three major types: none,
GOTO, and IF. In addition, the keyword LCC may be added to any if clause to
indicate that SMM should latch the condition bits.

C.4.1 No If Clause Present

If an instruction does not have an if clause (or the if clause is simply the direction
(LCC), execution proceeds to the next sequential instruction.

C.4.2 The GOTO-type If Clause

An if clause of the form (GOTO <address>) or (LCC GOTO <address>) causes
execution to unconditionally branch to the instruction at <address>. The speci-
fied <address> may be either an absolute numeric address or the label of another
instruction.

C.4.3 The IF-type If Clause

An if clauseof the form (IF <condition> <address>) or (LCC IF <condition>
<address>) denotes a conditional branch. The <condition> should be a valid con-
dition code identifier, representing one of the eight available condition bits. If the
<condition> bit is set (high), then execution branches to the instruction at the
specified <address>. If the <condition> is clear (low), then execution proceeds to
the next sequential instruction. Again, the specified <address> may be either an
absolute location of an instruction label.

* |31

C.5 Example Instructions

A few example instructions are show below:

;; Assigns result to multiple destinations. Since the goto field has
;; been omitted, the program would proceed to the next instruction.

(da (Us saddr) (r raddr) (latch)) (oper (r raddrl) r raddr2)))

;; First operand can be from the latch instead of register file. The
;; condition bits of the result are latched by using 1cc.

(da ((s saddr) (r raddr)) (oper (latch) (r raddr2)) (1cc))

;; Operation with one operand. The condition bit ccl is tested, and

if it is equal to one, a branch occurs to the instruction marked by
:foo.

(da (s saddr) (oper (latch)) (if ccl :foo))

;; Condition bits of result are latched and the program goes to the

;; instruction marked by :do.

(da (r raddr) (oper (r raddrl) (r raddr2)) (1cc goto :do))

;; Equivalent to nop but allows use of branching field. The location
;; none serves as a place holder for the assembler. No actual
;; location is accessed.

(da (none) (none) (goto :loop))

D The SMM Software Suite

This portion of the memo describes the software tools available for the Standard Map
Machine. Section D. 1 describes the primitive functions added to Scheme which allow
communication with SMM. In Section D.2 we describe some of the simple procedures
which exist to facilitate downloading of code to SMM and bidirectional transfer of

32

data. Section D.3 describes breifly how to run the assembler, and Section D.5 lists
warning messages which might be issued during assembly.

D.1 New Scheme Primitives

Three primitive operations were added to the CScheme Microcode to allow Scheme
processes to communicate with SMM. Acually, these primitives will work with any
HP memory-mapped device, not just SMM. These primitives are defined in the file

zurich:/scheme/users/chaos/microcode/chaos. c

A brief description of each new primitive follows:

D.1.1 (init-memory-mapped-device string)

The init-memory-mapped-device primitive initializes a page of memory for com-
munication with a memory-mapped device and tells the Unix kernel that accesses to
this area of memory should be directed to a specific device. nit-memory-mapped-device
takes one argument, a stri:sg containing the full name of the device file to be accessed
(we used "/dev/chjc" br SMM). The device file must already exist and be config-
ured to point to AIl, proper slot where the card resides. If init-memory-mapped-device
succeeds, it reLurns the base address of the memory block assigned to the device
(this value is also maintained internal to Scheme; we return it here to signify suc-
cess of the initialization operation). If init-memory-mapped-device fails, it returns
#!FALSE.

D.1.2 (write-memory-mapped-device! address data-word)

The write-memory-mapped-device! primitive takes as arguments an address ana
a data-word, both integer values, and "writes" the data-word at offset address in the
memory-mapped device block of reserved memory. When the write to the reserved
block of memory is attempted, it is converted into an operation to SMM. The address
value is sent over the address lines to SMM, and the data value is sent over the data
bus. As both busses are 16 bits wide, the binary representations of address and data
cannot exceed 16 bits.

33

9

D.1.3 (read-memory-mapped-device address)

The read-memory-mapped-device primitive takes an integer address as its argu-
ment and returns the integer data values "stored" at offset address in the device
memory. Again, the read operation is intercepted by the kernel and changed into a
request to the actual device. SMM reads the address from the address bus and send
back 16 bits of data on the data bus.

D.2 Scheme Utilities

Once the primitive operations described above were installed into the Scheme sys-
tem, higher-level utilities dealing with SMM could be built. Before using any of
these functions, the Scheme primitives must be initialized as follows:

(define init-memory-mapped-device
(make-primitive-procedure 'init-memory-mapped-device))

(define write-memory-mapped-device!
(make-primitive-procedure 'write-memory-mapped-device))

(define read-memory-mapped-device
(make-primitive-procedure 'read-memory-mapped-device))

(init-memory-mapped-device "/iev/chaos")

Once the primitives have been initialized, all of the procedures below may be used.

D.2.1 (stop-clock!)

The (stop-clock!) procedure halts the internal SMM clock. The clock should
always be stopped before performing any SMM memory operations from Scheme.

D.2.2 (start-board value)

The start-board procedure sends value through the high-order (bits 80-95) instruc-
tion latch to the high-order instruction register. The current values in the other
instruction latches (bits 0-79) are sent to bits 0-79 of the instruction registers. The
start-board procedure then starts the SMM system clock. Usually, start-board
is called with value equal to zero.

34

D.2.3 (download-code instr-vector)

The download-code procedure takes as an argument a vector of instruction bits
to be downloaded sequentially to SMM starting at instruction address 0. The
download-code procedure is generally used in conjunction with *chasm-bits*, the
output of the assembler.

D.2.4 (download-data data-list)

The download-data procedure is used to send constant vales to the SMM SRAM.
The data-list is a list of one- or two-element lists. A two-element list is interpreted
as an (address data) pair, with value data stored at locations address and address+1
(all data values are coerced to double-precision floating point values). A one-element
list (data) instructs download-data to store the value data in memory immediately
after the previous store. For example, the list

((0 1) (4 7.5) (12))

will cause value 1 to be stored at SRAM locations 0 and 1, value 7.5 to be stored
at locations 4 and 5, and values 12 to be stored at locations 6 and 7.

D.2.5 (upload-data memory-address)

The upload-data precedure returns the floating-point value stored at SRAM loca-
tions (memory-address, memory-address+ 1) in the SMM.

D.2.6 (wait)

The wait procedure reads the status of the SMM "wait" bit. If the value returned by
(wait) is even, then SMM is in a wait state and the host may access data memory.

D.2.7 (done)

The done procedure tells SMM that the host computer has finished accessing data
memory and to continue processing.

35

D.3 Using Chasm

This section details the Scheme procedures provided to access SMM assembler.

D.3.1 (chasm-source <source>)

The chasm-source procedure takes one argument, <source>, and runs chasm using
<source> as the program source code. <source> should be a list of instructions.
chasm-source displays a message as each phase of assembly begins.

D.3.2 (chasm-file <filename>)

The chasm-file procedure assembles a single file of SMM source code. It takes
one argument, the name of the file containing the source code (without the ".scm"
extension). chasm-file reads the source file (adding the ".scm" extension), runs
chasm-source over the source code, and dumps the resulting *chasm-bits* to <filename>.asm.
Note: as chasm-file uses the Scheme load procedure to read the source file, the
source code should be the last expression in the file.

D.3.3 (chasm-file-load <filename>)

This procedure is identical to the chasm-file procedure, except that it also performs
a (download-code *chasm-bits*) after the compilation is completed.

D.3.4 (chasm-file-list <filename>)

This procedure is identical to the chasm-file procedure, except it also generates a
listing file <filename>.lst. The listing file shows for each macro-expanded instruc-
tion the address, instruction label, source code, and generated bits.

D.4 Assembler Caveats and Programming Hints

Although chasm does a good job of converting RTL into SMM microinstructions, it
currently fails to warn the programmer of certain types of illegal programs. SMM
programmers should be aware of the following program constraints inposed by the
SMM architecture:

36

D.4.1 Multiplier/ALU Restrictions

D.4.1.1 Load Modes: The load mode for the multiplier and the ALU must be
set at the beginning of the program. It may be changed later to change the rounding
mode of the chips. The ALU-LOAD-MODE and MUL-LOAD-MODE macros facilitate setting
these values.

D.4.1.2 Latency in the ALU and Multiplier: Results of multiplier opera-

tions are sent to the desired destination ten instruction cycles after the execution of
the instruction. Results of ALU operations are written to the appropriate destina-
tions twelve cycles after the execution. of the instruction. References to destinations
of multiplier/ALU operations before the 10/12 cycles have passed will use the old
value of the location.

D.4.1.3 Multiplier Cycle Time: The pipelining requirements of the Weitek
mult-iplier place restrictions on when subsequent double-precision multiplier oper-
ations may start. After a multiplier operation is started, subsequent multiplier
operations may only be started two, six, and ten cycles after the initial operation4.

D.4.1.4 ALU Cycle Time: ALU pipelining requirements also place restric-
tions on the number of cycles between subsequent ALU operations. If a second
ALU operation is started before the first ALU operation has finished 5 , the the op-
erations must be separated by an even number of cycles.

D.4.1.5 Interleaving ALU and Multiplier Operations: When interleaving

ALU and multiplier operations, there must be at least two instruction cycles between
a multiplier operation and the previous ALU operation.

D.4.2 Conditional Branches

The LCC directive causes the SMM to latch the Weitek condition code bits resulting
from the operation performed. When using LCC with a double-precision macro (DA
or DL), the latch occurs on the first of the two single-precision instructions. The

4This restriction only applies to multiplier operations started within 12 cycles of the previous
multiplier operation

5That is, there are fewer than 14 cycles between the two iristrictions.

37

condition codes may be tested using an "if" clause twelve cycles after the LCC has
been performed6 .

The if clause tests the specified condition code bit and causes execution to jump
to the specified instruction if the condition is true. If clauses in double-precision
macros occur during the second of the two single-precision instructions.

Currently, only the ALU comparison instruction is provided by the assembler, al-
though it is simple to add functionality. The comparison function, cmp, takes two
operands and compares their values. To test if the first operand is less than the
second, latch the condition code bits and test if ccO is true. To test if the first
operand is greater than the second, latch the condition code bits and test if ccl is
true.

D.4.3 Using the Feed-Through Latch

The feed-through latch is used for fast serial computations by allowing the result of
a multiplier/ALU operation to be directly fed back into the multiplier or ALU as
the A-port input. To use the LATCH destination with the multiplier, the LATCH must
be used as a source exactly ten cycles later. When using the LATCH destination with
the ALU, the LATCH must be used as a source exactly twelve cycles later.

D.4.4 Reading from Data Memory

When reading from data memory, the entire data memory address is specified ill
the instruction. Data cannot be read from a location in memory ten cycles after a
multiplier operation which writes to that location, and twelve cycles after an ALU
operation which writes to that location.

D.4.5 Writing to Data Memory

When writing to data memory, only the low four bits of the address (the intrm-page
address) are specified in the actual instruction. The page of memory written to is

'That is, there must be the equivalent of at least. twelve loP instructions between the LCC and
the if clause.

7 Notice that since if clauses is placed in the second single-precision instruction and LCC directives
are placed in the first single-precision instruction, only ten instruction cycles are needed between
double-precision instruction instead of the normal twelve cycles.

38

specified by the result of the last F->IS operation. Page addresses range from 0 to
255; write address locations for each page range from 0 to 15.

D.5 Assembler Error Messages

This section details the possible warning/error messages which might be generated
by chasm.

9 Unknown Opcode: <op> inserting NOP instruction.:

The assembler read <op> as an instruction opcode, and <op> is not one of
the valid instruction types. The instruction in question was replaced with a
(NOP).

* Destination not a list: <dest> converting...:

The destination <dest> was not in list format. All valid destinations are lists.
The assembler wrapped the input destination in a list and is attempting to
proceed.

* Tried to Increment Unknown Dest: <dest> ignoring...:

e Tried to Increment Unknown Source: <source> ignoring...:

In the process of macro-expanding a DA or DL instruction, the assembler
read destination <dest> (source <source>), which it was not able to parse.
The destination (source) was not incremented for the second single-precision
instruction.

* Source is not a list: <source> converting...: The source <source> was
not in list format. All valid sources are lists. The assembler wrapped the input
source in a list and is attempting to proceed.

• Incrementing odd REGISTER <num> in DP...":

e Incrementing odd SRAM <num> in DP...":

The source to a DA or DL instruction was an odd register or SRAM loca-
tion. These instructions take the low-order word of a double-precision number,
which by convention is in a even location.

9 Unmatched use of LATCH, no reference beyond end of code.:

The (LATCH) was used as a destination, but the code vector ends before that
value is available.

39

" Unmatched use of LATCH, no reference in instr <instr> number
<future-num>:

The (LATCH) was used as a destination, but no matching source reference was
made 12 (for ALU) or 10 (for multiplier) cycles later.

" Warning: last placed instr not null...:

The last instruction in the vector, normally clobbered into a (JUMP 0) in-
struction to start the machine, was not a (NaP). This should not happen,
ever.

" Unknown Label <label> assuming instruction 0:

A label was referenced, but no instruction was tagged with it in the source
program. The assembler has assumed address 0 as the address of the label.

* Source length too long: <source> ignoring extraneous stuff:

* Dest length too long: <dest> ingoring extraneous stuff:

An unusually long (more than .two element) source (destination) was read.
Everything after the first two elements was ignored.

" Illegal Port: <port> assuming A-PORT:

An attempt was made to reference the LATCH from a port other than tile
A-PORT. The LATCH is only connected to the A-PORT.

" Unknown Source: <source> assuming LATCH:

" Unknown Dest: <dest> assuming LATCH:

A one-element <source> (or <dest>) was read, but it was neither (NONE) nor
(LATCH). The assembler has assumed it was a (LATCH) and continued.

" Unknown Source: <source> assuming REGISTER:

" Unknown Dest: <dest> assuming REGISTER:

A two-element <source> (<dest>) was read, but it was neither a register
reference nor an SRAM access. The assembler has assumed it was a register
reference.

" Unknown MathOp: <mathop> assuming +:

The assembler read a math operator which it didn't recognize as valid. The
unknown operator was replaced with +.

40

0

* Generating bits for unknown port: <port> ignoring:

In the process of generating the actual bits for an instruction, the assembler
was told to use port <port>, which it didn't recognize as valid.

* Unknown CC: <cc> assuming code 0

The unknown condition code <cc> was read in an if-clause. The code was
replaced with ccO.

*41

42

&"

References

[1] Abelson, H. and Sussman, G. J. with Sussman, J., Structure and Interpretation
of Computer Programs. M.I.T. Press, MA, 1984.

[2] Applegate, J., et. al., A Digital Orrery. IEEE Transactions on Computers, Vol.
c-34, No. 9, September 1985.

[3] Chirikov, Boris V., A Universal Instability of Many-Dimensional Oscillator
Systems. Physics Report 52, No. 5 (1979), pp. 263-379.

[4] Clinger, W. and Rees, J., ed., The Revised3 Report on the Algorithmic Lan-
guage Scheme. Al Memo 848a, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, MA, September 1986.

[5] HP Series 200 Accessory Development Guide. Hewlett-Packard Co., Colorado,
1983.

[61 Higgs, M., Advanced Schottky Load Management. Texas Instruments Inc., 1987.

[7] Nieh, j., Using Special-Purpose Computing to Examine Chaotic Behavior in
Nonlinear Mappings. S. B. Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, MA, May, 1989.

[8] Roylance, G. L., Expressing Mathematical Subroutines Constructively. Al
Memo 999, Massachusetts Institute of Technology Artificial Intelligence Labo-
ratory, MA, November 1987.

[9] Sussman, G. J. and Wisdom, J., Numerical Evidence that the Motion of Pluto
is Chaotic. Al Memo 1039, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, MA, April 27, 1988.

0

